Senin, 27 Juni 2016

Apa itu Bioinformatika???

Pada kali ini saya akan membahas tentang Bioinformatika. Pasti kalian bingung dan penasaran apasih itu Bioinformatika?? apa mungkin itu pelajaran Biologi yang dikait-kaitkan dengan pelajaran Informatika dan sebaliknya. Dari pada kita bingung, simak penjelasan berikut ini. Bioinformatika (bahasa Inggris: bioinformatics) adalah (ilmu yang mempelajari) penerapan teknik komputasional untuk mengelola dan menganalisis informasi biologis. Bidang ini mencakup penerapan metode-metode matematika, statistika, dan informatika untuk memecahkan masalah-masalah biologis, terutama dengan menggunakan sekuens DNA dan asam amino serta informasi yang berkaitan dengannya. Contoh topik utama bidang ini meliputi basis data untuk mengelola informasi biologis, penyejajaran sekuens (sequence alignment), prediksi struktur untuk meramalkan bentuk struktur protein maupun struktur sekunder RNA, analisis filogenetik, dan analisis ekspresi gen.
Bioinformatika merupakan ilmu terapan yang lahir dari perkembangan teknologi informasi dibidang molekular. Pembahasan dibidang bioinformatik ini tidak terlepas dari perkembangan biologi molekular modern, salah satunya peningkatan pemahaman manusia dalam bidang genomic yang terdapat dalam molekul DNA.
Kemampuan untuk memahami dan memanipulasi kode genetik DNA ini sangat didukung oleh teknologi informasi melalui perkembangan hardware dan soffware. Baik pihak pabrikan sofware dan harware maupun pihak ketiga dalam produksi perangkat lunak. Salah satu contohnya dapat dilihat pada upaya Celera Genomics, perusahaan bioteknologi Amerika Serikat yang melakukan pembacaan sekuen genom manusia yang secara maksimal memanfaatkan teknologi informasi sehingga bisa melakukan pekerjaannya dalam waktu yang singkat (hanya beberapa tahun).
Perkembangan teknologi DNA rekombinan memainkan peranan penting dalam lahirnya bioinformatika. Teknologi DNA rekombinan memunculkan suatu pengetahuan baru dalam rekayasa genetika organisme yang dikenala bioteknologi. Perkembangan bioteknologi dari bioteknologi tradisional ke bioteknologi modren salah satunya ditandainya dengan kemampuan manusia dalam melakukan analisis DNA organisme, sekuensing DNA dan manipulasi DNA.
Sekuensing DNA satu organisme, misalnya suatu virus memiliki kurang lebih 5.000 nukleotida atau molekul DNA atau sekitar 11 gen, yang telah berhasil dibaca secara menyeluruh pada tahun 1977. Kemudia Sekuen seluruh DNA manusia terdiri dari 3 milyar nukleotida yang menyusun 100.000 gen dapat dipetakan dalam waktu 3 tahun, walaupun semua ini belum terlalu lengkap. Saat ini terdapat milyaran data nukleotida yang tersimpan dalam database DNA, GenBank di AS yang didirikan tahun 1982.
Bioinformatika ialah ilmu yang mempelajari penerapan teknik komputasiuntuk mengelola dan menganalisis informasi hayati. Bidang ini mencakup penerapan metode-metode matematika, statistika, dan informatika untuk memecahkan masalah-masalah biologi, terutama yang terkait dengan penggunaan sekuens DNA dan asam amino. Contoh topik utama bidang ini meliputi pangkalan data untuk mengelola informasi hayati, penyejajaran sekuens (sequence alignment), prediksi struktur untuk meramalkan struktur protein atau pun struktur sekunder RNA, analisis filogenetik, dan analisis ekspresi gen.
Bioinformatika pertamakali dikemukakan pada pertengahan 1980an untuk mengacu kepada penerapan ilmu komputer dalam bidang biologi. Meskipun demikian, penerapan bidang-bidang dalam bioinformatika seperti pembuatan pangkalan data dan pengembangan algoritma untuk analisis sekuens biologi telah dilakukan sejak tahun 1960an.

Bidang-Bidang yang Terkait dengan Bioinformatika
Biophysics
Biologi molekul sendiri merupakan pengembangan yang lahir dari biophysics. Biophysics adalah sebuah bidang interdisipliner yang mengaplikasikan teknik- teknik dari ilmu Fisika untuk memahami struktur dan fungsi biologi (British Biophysical Society). Sesuai dengan definisi di atas, bidang ini merupakan suatu bidang yang luas. Namun secara langsung disiplin ilmu ini terkait dengan Bioinformatika karena penggunaan teknik-teknik dari ilmu Fisika untuk memahami struktur membutuhkan penggunaan TI.
Computational Biology
Computational biology merupakan bagian dari Bioinformatika (dalam arti yang paling luas) yang paling dekat dengan bidang Biologi umum klasik. Fokus dari computational biology adalah gerak evolusi, populasi, dan biologi teoritis daripada biomedis dalam molekul dan sel. Tak dapat dielakkan bahwa Biologi Molekul cukup penting dalam computational biology, namun itu bukanlah inti dari disiplin ilmu ini. Pada penerapan computational biology, model-model statistika untuk fenomena biologi lebih disukai dipakai dibandingkan dengan model sebenarnya. Dalam beberapa hal cara tersebut cukup baik mengingat pada kasus tertentu eksperimen langsung pada fenomena biologi cukup sulit. Tidak semua dari computational biology merupakan Bioinformatika, seperti contohnya Model Matematika bukan merupakan Bioinformatika, bahkan meskipun dikaitkan dengan masalah biologi.
Medical Informatics
Menurut Aamir Zakaria [ZAKARIA2004] Pengertian dari medical informatics adalah “sebuah disiplin ilmu yang baru yang didefinisikan sebagai pembelajaran, penemuan, dan implementasi dari struktur dan algoritma untuk meningkatkan komunikasi, pengertian dan manajemen informasi medis.” Medical informatics lebih memperhatikan struktur dan algoritma untuk pengolahan data medis, dibandingkan dengan data itu sendiri. Disiplin ilmu ini, untuk alasan praktis, kemungkinan besar berkaitan dengan data-data yang didapatkan pada level biologi yang lebih “rumit” –yaitu informasi dari sistem-sistem superselular, tepat pada level populasi—di mana sebagian besar dari Bioinformatika lebih memperhatikan informasi dari sistem dan struktur biomolekul dan selular.
Cheminformatics
Cheminformatics adalah kombinasi dari sintesis kimia, penyaringan biologis, dan pendekatan data-mining yang digunakan untuk penemuan dan pengembangan obat (Cambridge Healthech Institute’s Sixth Annual Cheminformatics conference). Pengertian disiplin ilmu yang disebutkan di atas lebih merupakan identifikasi dari salah satu aktivitas yang paling populer dibandingkan dengan berbagai bidang studi yang mungkin ada di bawah bidang ini.
Salah satu contoh penemuan obat yang paling sukses sepanjang sejarah adalah penisilin, dapat menggambarkan cara untuk menemukan dan mengembangkan obatobatan hingga sekarang –meskipun terlihat aneh–. Cara untuk menemukan dan mengembangkan obat adalah hasil dari kesempatan, observasi, dan banyak proses kimia yang intensif dan lambat. Sampai beberapa waktu yang lalu, disain obat dianggap harus selalu menggunakan kerja yang intensif, proses uji dan gagal (trial-error process).
Genomics
Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom, kecuali dalam bentuk yang paling kasar. Genomics adalah setiap usaha untuk menganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih. Secara logis tentu saja mungkin untuk membandingkan genom-genom dengan membandingkan kurang lebih suatu himpunan bagian dari gen di dalam genom yang representatif.
Mathematical Biology
Mathematical biology lebih mudah dibedakan dengan Bioinformatika daripada computational biology dengan Bioinformatika. Mathematical biology juga menangani masalah-masalah biologi, namun metode yang digunakan untuk menangani masalah tersebut tidak perlu secara numerik dan tidak perlu diimplementasikan dalam software maupun hardware. Bahkan metode yang dipakai tidak perlu “menyelesaikan” masalah apapun; dalam mathematical biology bisa dianggap beralasan untuk mempublikasikan sebuah hasil yang hanya menyatakan bahwa suatu masalah biologi berada pada kelas umum tertentu. Menurut Alex Kasman [KASMAN2004] Secara umum mathematical biology melingkupi semua ketertarikan teoritis yang tidak perlu merupakan sesuatu yang beralgoritma, dan tidak perlu dalam bentuk molekul, dan tidak perlu berguna dalam menganalisis data yang terkumpul.
Proteomics
Istilah proteomics pertama kali digunakan untuk menggambarkan himpunan dari protein-protein yang tersusun (encoded) oleh genom. Ilmu yang mempelajari proteome, yang disebut proteomics, pada saat ini tidak hanya memperhatikan semua protein di dalam sel yang diberikan, tetapi juga himpunan dari semua bentuk isoform dan modifikasi dari semua protein, interaksi diantaranya, deskripsi struktural dari proteinprotein dan kompleks-kompleks orde tingkat tinggi dari protein, dan mengenai masalah tersebut hampir semua pasca genom. Michael J. Dunn [DUNN2004], Pemimpin Redaksi dari Proteomics mendefiniskan kata “proteome” sebagai: “The PROTEin complement of the genOME”. Dan mendefinisikan proteomics berkaitan dengan: “studi kuantitatif dan kualitatif dari ekspresi gen di level dari protein-protein fungsional itu sendiri”. Yaitu: “sebuah antarmuka antara biokimia protein dengan biologi molekul”.
Mengkarakterisasi sebanyak puluhan ribu protein-protein yang dinyatakan dalam sebuah tipe sel yang diberikan pada waktu tertentu –apakah untuk mengukur berat molekul atau nilai-nilai isoelektrik protein-protein tersebut– melibatkan tempat penyimpanan dan perbandingan dari data yang memiliki jumlah yang sangat besar, tak terhindarkan lagi akan memerlukan Bioinformatika.
Pharmacogenomics
Pharmacogenomics adalah aplikasi dari pendekatan genomik dan teknologi pada identifikasi dari target-target obat. Contohnya meliputi menjaring semua genom untuk penerima yang potensial dengan menggunakan cara Bioinformatika, atau dengan menyelidiki bentuk pola dari ekspresi gen di dalam baik patogen maupun induk selama terjadinya infeksi, atau maupun dengan memeriksa karakteristik pola-pola ekspresi yang ditemukan dalam tumor atau contoh dari pasien untuk kepentingan diagnosa (kemungkinan untuk mengejar target potensial terapi kanker). Istilah pharmacogenomics digunakan lebih untuk urusan yang lebih “trivial” — tetapi dapat diargumentasikan lebih berguna– dari aplikasi pendekatan Bioinformatika pada pengkatalogan dan pemrosesan informasi yang berkaitan dengan ilmu Farmasi dan Genetika, untuk contohnya adalah pengumpulan informasi pasien dalam database.
Pharmacogenetics
Tiap individu mempunyai respon yang berbeda-beda terhadap berbagai pengaruh obat; sebagian ada yang positif, sebagian ada yang sedikit perubahan yang tampak pada kondisi mereka dan ada juga yang mendapatkan efek samping atau reaksi alergi. Sebagian dari reaksi-reaksi ini diketahui mempunyai dasar genetik. Pharmacogenetics adalah bagian dari pharmacogenomics yang menggunakan metode genomik/Bioinformatika untuk mengidentifikasi hubungan-hubungan genomik, contohnya SNP (Single Nucleotide Polymorphisms), karakteristik dari profil respons pasien tertentu dan menggunakan informasi-informasi tersebut untuk memberitahu administrasi dan pengembangan terapi pengobatan. Secara menakjubkan pendekatan tersebut telah digunakan untuk “menghidupkan kembali” obat-obatan yang sebelumnya dianggap tidak efektif, namun ternyata diketahui manjur pada sekelompok pasien tertentu. Disiplin ilmu ini juga dapat digunakan untuk mengoptimalkan dosis kemoterapi pada pasien-pasien tertentu. Gambaran dari sebagian bidang-bidang yang terkait dengan Bioinformatika di atas memperlihatkan bahwa Bioinformatika mempunyai ruang lingkup yang sangat luas dan mempunyai peran yang sangat besar dalam bidangnya. Bahkan pada bidang pelayanan kesehatan Bioinformatika menimbulkan disiplin ilmu baru yang menyebabkan peningkatan pelayanan kesehatan.

Sumber :
http://bioinformatika-q.blogspot.com/
Aprijani, Dwi Astuti, & Elfaizi, M. Abdushshomad, BIOINFORMATIKA: Perkembangan, Disiplin Ilmu dan Penerapannya di Indonesia,http://kambing.ui.ac.id/bebas/v06/Kuliah/SistemOperasi/2003/50/Bioinformatika.pdf

Sabtu, 30 April 2016

Hubungan Pararel Processing dengan Komputasi Modern





Disini kita akan mempelajari apa itu hubungan Paralel Processing dengan Komputasi Modern. Kita akan membahas satu persatu yang dimulai dari pengertian Paralel Processing. Apa itu Paralel Processing??? Paralel Processing adalah kemampuan menjalankan tugas atau aplikasi lebih dari satu aplikasi dan dijalankan secara simultan atau bersamaan pada sebuah komputer. Secara umum, ini adalah sebuah teknik dimana sebuah masalah dibagi dalam beberapa masalah kecil untuk mempercepat proses penyelesaian masalah. Terdapat dua hukum yang berlaku dalam sebuah parallel processing. yaitu:
·     Hukum Amdahl
Amdahl berpendapat, "Peningkatan kecepatan secara paralel akan menjadi linear, melipatgandakan kemampuan proses sebuah komputer dan mengurangi separuh dari waktu proses yang diperlukan untuk menyelesaikan sebuah masalah."


Hukum Gustafson
Pendapat yang dIkemukakan Gustafson hampir sama dengan Amdahl, tetapi dalam pemikiran Gustafson, sebuah komputasi paralel berjalan dengan menggunakan dua atau lebih mesin untuk mempercepat penyelesaian masalah dengan memperhatikan faktor eksternal, seperti kemampuan mesin dan kecepatan proses tiap-tiap mesin yang digunakan. 



Tujuan utama dari parallel processing adalah untuk meningkatkan performa komputasi. Semakin banyak hal yang bisa dilakukan secara bersamaan (dalam waktu yang sama), semakin banyak pekerjaan yang bisa diselesaikan. Michael J. Flynn membagi komputer dalam 4 kategori yaitu :
SISD (Single Instruction, Single Data Stream)
Single Data adalah satu-satunya yang menggunakan arsitektur Von Neumann. Ini dikarenakan pada model ini hanya digunakan 1 processor saja. Oleh karena itu model ini bisa dikatakan sebagai model untuk komputasi tunggal. Sedangkan ketiga model lainnya merupakan komputasi paralel yang menggunakan beberapa processor. Beberapa contoh komputer yang menggunakan model SISD adalah UNIVAC1, IBM 360, CDC 7600, Cray 1 dan PDP 1.

MISD (Multiple Instruction, Single Data Stream)
MISD menggunakan banyak processor dengan setiap processor menggunakan instruksi yang berbeda namun mengolah data yang sama. Hal ini merupakan kebalikan dari model SIMD. Untuk contoh, kita bisa menggunakan kasus yang sama pada contoh model SIMD namun cara penyelesaian yang berbeda. Pada MISD jika pada komputer pertama, kedua, ketiga, keempat dan kelima sama-sama mengolah data dari urutan 1-100, namun algoritma yang digunakan untuk teknik pencariannya berbeda di setiap processor. Sampai saat ini belum ada komputer yang menggunakan model MISD.

SIMD (Single Instruction, Multiple Data Streams)
SIMD menggunakan banyak processor dengan instruksi yang sama, namun setiap processor mengolah data yang berbeda. Sebagai contoh kita ingin mencari angka 27 pada deretan angka yang terdiri dari 100 angka, dan kita menggunakan 5 processor. Pada setiap processor kita menggunakan algoritma atau perintah yang sama, namun data yang diproses berbeda. Misalnya processor 1 mengolah data dari deretan / urutan pertama hingga urutan ke 20, processor 2 mengolah data dari urutan 21 sampai urutan 40, begitu pun untuk processor-processor yang lain. Beberapa contoh komputer yang menggunakan model SIMD adalah ILLIAC IV, MasPar, Cray X-MP, Cray Y-MP, Thingking Machine CM-2 dan Cell Processor (GPU).

MIMD (Multiple Instruction, Multiple Data Streams)
MIMD menggunakan banyak processor dengan setiap processor memiliki instruksi yang berbeda dan mengolah data yang berbeda. Namun banyak komputer yang menggunakan model MIMD juga memasukkan komponen untuk model SIMD. Beberapa komputer yang menggunakan model MIMD adalah IBM POWER5, HP/Compaq AlphaServer, Intel IA32, AMD Opteron, Cray XT3 dan IBM BG/L.


Setelah kita mengetahui sedikit mengenai parallel processing, agar dapat menghubungkan dengan komputasi modern maka saya menghubungkan materi diatas dengan jurnal yang berjudul Parallel processing Menggunakan Komputer Heterogen. Pada jurnal ini Masalah yang akan dibahas adalah bagaimana mengaplikasikan parallel processing menggunakan komputer yang heterogen (spesifikasinya berbeda-beda). Selain itu,sistem juga tidak akan terhubung ke jaringan Internet. Sehingga dapat dihubungkan bahwa Komputasi Modern merupakan sebuah sistem yang akan menyelesaikan masalah matematis menggunakan komputer dengan cara menyusun algoritma yang dapat dimengerti oleh komputer yang berguna untuk menyelesaikan suatu masalah.  Dalam komputasi modern terdapat perhitungan dan pencarian solusi dari masalah. Perhitungan dari komputasi modern adalah akurasi, kecepatan, problem, volume dan besar serta kompleksitas.

Sedangkan konsep parallel processing adalah bagaimana membangun sebuah ekosistem dimana komputer mandiri dapat mengerjakan serangkaian tugas secara bersama dalam waktu yang bersamaan dan bersifat kontinyu. Dalam kondisi teknologi sekarang ini, komputasi modern bagaikan selalu berdampingan dengan parallel processing. Sebagian besar perusahaan berbasisi internet seperti google, facebook, twitter pasti memiliki ekosistem server yang menerapkan parallel processing untuk menjaga kecepatan akses dari server. Dari jurnal yang telah didapatkan dapat dilihat dilihat bahwa sistem paralel dapat dibangun dari kumpulan komputer dengan spesifikasi yang beraneka macam. Hal itu ditunjang dengan fakta bahwa sistem paralel dapat memanfaatkan sumber daya komputer yang telah ada walaupun spesifikasinya berbeda-beda. Selain itu pada jumlah komputer, sistem paralel dapat menyelesaikan suatu suatu masalah lebih cepat dari suatu komputer tunggal. Sehingga dapat disimpulkan bahwa parallel processing berhubungan dengan komputasi modern karena keduanya saling membutuhkan dan berkaitan satu sama lain.

Sumber :
http://journal.uii.ac.id/index.php/Snati/article/download/1607/1382
http://bagusonthespot.blogspot.com/2012/04/parallel-processing.html
http://freecyberattitude.blogspot.co.id/2016/04/pengertian-komputasi-dengan-parallel.html

Sabtu, 02 April 2016

Pengertian dan Penerapan Komputasi Modern

Pada kali ini saya akan membahas tentang "Pengantar Komputasi Modern". Disini saya akan menjelaskan beberapa poin, yaitu dimana saya akan menjelaskan apa itu pengertian dari komputasi modern dilanjutkan dengan menjabarkan penerapan komputasi modern.

1.      Pengertian Komputasi Modern
Komputasi modern adalah sebuah konsep sistem yang menerima intruksi-intruksi dan menyimpannya dalam sebuah memory, memory disini bisa juga dari memory komputer. Oleh karena pada saat ini kita melakukan komputasi menggunakan komputer maka bisa dibilang komputer merupakan sebuah komputasi modern. Konsep ini pertama kali digagasi oleh John Von Neumann (1903-1957). Beliau adalah ilmuwan yang meletakkan dasar-dasar komputer modern. Von Neumann telah menjadi ilmuwan besar abad 21. Von Neumann memberikan berbagai sumbangsih dalam bidang matematika, teori kuantum, game theory, fisika nuklir, dan ilmu komputer yang di salurkan melalui karya-karyanya .
Beliau juga merupakan salah satu ilmuwan yang terkait dalam pembuatan bom atom di Los Alamos pada Perang Dunia II lalu. Kegeniusannya dalam matematika telah terlihat semenjak kecil dengan mampu melakukan pembagian bilangan delapan digit (angka) di dalam kepalanya. Dipicu ketertarikannya pada hidrodinamika dan kesulitan penyelesaian persamaan diferensial parsial nonlinier yang digunakan, Von Neumann kemudian beralih dalam bidang komputasi. Sebagai konsultan pada pengembangan ENIAC, dia merancang konsep arsitektur komputer yang masih dipakai sampai sekarang.
Dalam kerjanya komputasi modern menghitung dan mencari solusi dari masalah yang ada, dan perhitungan yang dilakukan itu meliputi:
1. Akurasi (big, Floating point)
2. Kecepatan (dalam satuan Hz)
3. Problem Volume Besar (Down Sizzing atau pararel)
4. Modeling (NN & GA)
5. Kompleksitas (Menggunakan Teori big O
2.      Penerapan Komputasi Modern
1.      Komputasi hijau
Di bidang pendidikan, dengan adanya komputasi hijau dapat menghindari penggunaan kertas, yaitu menggunakan file elektronik dalam melakukan penggumpulan tugas. Selain itu, system e-learning juga dapat diterapkan sebagai metode pembelajaran, sehingga pemberian modul pembelajaran, forum diskusi dan tugas dapat dilakukan pada e-learning tersebut.
Dalam bidang bisnis, komputasi hijau juga dapat diterapkan dengan melakukan blogging untuk membangun branding image pribadi, marketing dan bisnis. Dengan demikian, cara konvensional seperti kartu nama, koran dan majalah dapat ditinggalkan.



2.      Bioinformatika
Pada dunia pendidikan, bioinformatika diterapkan melalui computational biology.  Model-model statistika untuk fenomena biologi dalam penerapan ini lebih  disukai dipakai dibandingkan dengan model sebenarnya. Dalam beberapa hal cara tersebut cukup baik mengingat pada kasus tertentu eksperimen langsung pada fenomena biologi cukup sulit.
Di bidang kesehatan, banyak sekali manfaat dari penerapan bioinformatika. Mengingat pekerjaan bioinformatika berkaitan dengan teknologi database yang penggunaannya meliputi tempat penyimpanan database “umum” seperti GenBank atau PDB maupun database “pribadi”, seperti yang digunakan oleh grup riset yang terlibat dalam proyek pemetaan gen atau database yang dimiliki oleh perusahaan-perusahaan bioteknologi. Dengan demikian, akan semakin mudah para peneliti dapat mengembangkan obat mau pun vaksin untuk berbagai penyakit yang ada serta mencegah kelainan gen pada manusia.

3.      Komputasi Awan
Adanya cloud computing sangat berdampak besar terutama di dunia bisnis. Dengan teknologi ini, suatu perusahaan dapat mengurangi beban biaya dan menaikan nilai produksi, sehingga dari hal tersebut banyak perusahaan beralih menggunakan teknologi ini. Penghemat dana di perusahaan itu sendiri terjadi di bidang IT, yaitu dalam penggadaan komputer, server, OS, software, staff IT, dan lainnya karena dengan Cloud Computing yang perlu dibayar hanyalah apa saja yang telah digunakan (software dan  penyimpanan) dan hal ini sesuai dengan kebutuhan perusahaan tersebut sehingga memungkinkan perusahan untuk membayar lebih murah jika menggunakan Cloud Computing.
Komputasi awan ini juga dapat diterapkan untuk perpustakaan. Dengan teknologi ini, di masa yang akan datang perpustakaan yang merupakan penyedia layanan informasi dapat memberikan layanan yang terbaik, mutakhir, dan berkesinambungan terhadap penggunanya. Dengan berbekal informasi yang ada, pengguna dapat melakukan berbagai pengkajian, penelitian atau keperluan lain untuk melahirkan pemikiran dan inovasi yang dapat bermanfaat bagi khalayak luas.


Sumber :



Senin, 18 Januari 2016

Pesawat Drone



Pesawat Drone adalah mesin terbang tanpa awak yang dikendalikan dari jarak jauh oleh pilot atau mampu mengendalikan dirinya sendiri sesuai dengan program yang telah ditentukan, menggunakan hukum aerodinamika untuk mengangkat dirinya, bisa digunakan kembali dan mampu membawa muatan seperti kamera pengintai, senjata dan lainnya.
Pesawat Drone sering juga disebut dengan Pesawat UAV (Unmadded Aerial Vehicle) atau Pesawat Nirawak (Pesawat Tanpa Awak).
Pesawat ini memiliki dua variasi utama pengendalian. Variasi pertama adalah dikendalikan oleh pilot secara manual dari jarak jauh dengan menggunakan sistem radio kontrol. Variasi kedua adalah dikendalikan secara otomatis oleh program yang telah ditentukan sebelum terbang. Pesawat tanpa awak ini hampir mirip dengan rudal atau peluru kendali, namun tentunya tidak sama. Pesawat tanpa awak bisa digunakan kembali dan bisa mengangkat atau menjatuhkan senjata, sedangkan rudal hanya bisa digunakan sekali dan merupakan senjata itu sendiri.
Pada awalnya, pesawat tanpa awak ini berfungsi untuk pengintaian dan penyerangan. Oleh karenanya penggunaan terbesar dari pesawat tanpa awak ini adalah di bidang militer. Namun belakangan, pesawat ini juga banyak digunakan oleh sipil (non-militer) seperti pemetaan wilayah, foto/video udara, keamanan sipil, pemadam kebakaran, atau pemeriksaan jalur pemipaan dan sebagainya. Pesawat tanpa awak ini sering digunakan untuk tugas-tugas kotor atau berbahaya apabila dilakukan oleh pesawat berawak. Dan tentunya pesawat tanpa awak dapat melakukan tugas-tugas tertentu secara efektif dan efisien jika dibandingkan dengan pesawat berawak.
Saat ini, Indonesia telah mampu memproduksi sendiri pesawat tanpa awak, yang disebut dengan istilah PTTA (Pesawat Terbang Tanpa Awak). PTTA telah diproduksi oleh industri dalam negeri antara lain : PT. Dirgantara Indonesia, PT. UAV Indo, PT. Globalindo Tekhnologi Service Indonesia, PT. RAI (Robo Aero Indonesia), PT. Aviator dan PT. Carita. Adapun PTTA hasil produk dalam negeri tersebut saat ini digunakan untuk kepentingan olah raga kedirgantaraan dan beberapa industi masih mengadakan pengembangan PTTA untuk kepentingan sasaran latihan Arhanud. Dengan adanya kemampuan berbagai industri dalam negeri dalam mengembangkan PTTA tersebut, merupakan potensi dan peluang yang dapat dimanfaatkan untuk mengembangkan PTTA yang memiliki kemampuan sebagai pesawat pengintai/pemantau sasaran/obyek dari udara. Pengembangan PTTA tersebut dilakukan dengan melengkapi sebuah kamera dan hasilnya secara langsung dapat diamati pada layer Display di Ground Station.


Fakta Drone yang dibutuhkan manusia dalam berbagai bidang:
1.      Drone sebagai alat pengantar barang.
Drone menggantikan tugas pelayan direstoran untuk mengantar makanan yang dipesan oleh konsumen.
2.      Drone sebagai angkatan militer.
Drone tank yang tidak lagi menggunakan sopir karena sistem kinerjanya yang ada didalamnya sudah dikendalikan oleh remote.
3.      Drone digunakan untuk kesehatan.
Untuk menolong pasien yang terkena serangan jantung, hendaknya harus segera ditangani.
4.      Drone sebagai pemantau bencana alam.
Drone ini bisa membantu para relawan untuk mengetahui medan bencana yang ada disekitar kejadian.
5.      Drone sebagai alat fotografi.
Ketika ingin mengambil gambar pada sudut yang berbeda dan susah, drone juga bisa digunakan sebagai medianya supaya anda bisa lebih leluarsa dalam mengambil gambar dengan sesuka hati.


Jenis dan Fungsi Drone


Fungsi Drone

Drone atau pesawat tanpa awak selain digunakan untuk militer sudah mulai dikembangkan untuk misi pencarian dan penyelamatan. Pesawat drone juga sudah mulai dikembangkan untuk keperluan jurnalistik, misalnya  untuk memotret, merekam video dan pengumpulan data. Selain itu  juga mulai dipergunakan untuk pengiriman barang dan makanan. Fungsi drone bisa dikembangkan oleh siapa saja yang memiliki keahlian khusus, digunakan untuk apa dan seperti apa pengendaliannya. Belakangan ini drone masih dikendalikan secara manual atau menggunakan remote kontrol. Namun  sekarang drone bisa dikendalikan secara semi otomatasi menggunakan sistem algoritma pada unit kontrol drone itu sendiri.

Jenis Jenis Drone

Drone ada 2 jenis (Berdasarkan baling baling)  :
  • Fixed wing Drone ( Tunggal)
Drone jenis ini berbentuk seperti pesawat komersial dan digunakan untuk proses yang cepat, daya jangkau lebih cepat serta lebih luas, biasanya untuk pemetaan (mapping) atau  konsepnya seperti scaning. Drone jenis Fixed wins memiliki Energi lebih irit baterai karena single baling baling.
  • Multicopter Drone (Multi)
Untuk Anda yang ingin membuat video yang bagus sangat cocok memilih drone yang multi copter dikarenakan Lebih stabil dan daya angkut serta kekuatan untuk mengangkat beban (kemera) bisa yang lebih berat. Semakin banyak baling baling semakin stabil dan lebih aman.

Jenis baling baling :
a.       3 baling baling (3Copter)
b.      4 baling baling (Quadcopter)
c.       6 baling baling (HexaCopter)
d.      8 Baling baling (Octacopter)


Sumber: